UNIVERSITY OF MADRAS

M.Sc. DEGREE PROGRAMME IN COMPUTER SCIENCE SYLLABUS WITH EFFECT FROM 2023-2024

Titleof the Paper	Machine Learning				
Core–X - Theory	IIYear&IIISemester	Credit: 4	536C3B		

Objectives:

To provide mathematical base for Machine learning

To provide theoretical knowledge on setting hypothesis for pattern recognition.

To impart Knowledge of machine learning techniques for data handling

To provide the skill to evaluate the performance of algorithms and to provide solution for various real-world applications.

To impart the knowledge of identifying similarities and differences in various patterns of data

Outcomes:

1.	Recognize the characteristics of machine learning strategies. Apply various	K1, K2				
1.		111, 112				
	supervised learning methods to appropriate problems.					
2.	Identify and integrate more than one technique to enhance the performance					
	of learning.	,				
3.	Analyze the co-occurrence of data to find interesting frequent patterns.	K3, K4				
4.	Preprocess the data before applying to any real-world problem and can	K4, K5				
	evaluate its performance.					
5.	Create probabilistic and unsupervised learning models for handling unknown	K5, K6				
	pattern.					
	K1-Remember; K2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6-Create					

Unit I: BASIC MATHEMATICS FOR MACHINE LEARNING: Regression Correlation and Regression, types of correlation – Pearson's, Spearman's correlations –Ordinary Least Squares, Fitting a regression line, logistic regression, Rank Correlation Partial and Multiple correlation-Multiple regression, multicollinearity. Gradient descent methods, Newton method, interior point methods, active set, proximity methods, accelerated gradient methods, coordinate descent, cutting planes, stochastic gradient descent. Discriminant analysis, Principal component analysis, Factor analysis, k means.

Unit II: INTRODUCTION TO MACHINE LEARNING: Introduction, Examples of various Learning Paradigms, Perspectives and Issues, Version Spaces, Finite and Infinite Hypothesis Spaces, PAC Learning, VC Dimension.

Unit III: SUPERVISED LEARNING ALGORITHMS Learning a Class from Examples, Linear, Non-linear, Multi-class and Multi-label classification, Decision Trees: ID3, Classification and Regression Trees (CART), Regression: Linear Regression, Multiple Linear Regression, Logistic Regression. Neural Networks: Introduction, Perceptron, Multilayer Perceptron, Support vector machines: Linear and Nonlinear, Kernel Functions, K-Nearest Neighbors

Unit IV: ENSEMBLE LEARNING: Ensemble Learning Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: RandomForest Trees, Boosting: Adaboost, Stacking:

UNIVERSITY OF MADRAS

M.Sc. DEGREE PROGRAMME IN COMPUTER SCIENCE SYLLABUS WITH EFFECT FROM 2023-2024

UNSUPERVISED LEARNING: Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Self Organizing Map, Expectation Maximization, Gaussian Mixture Models, Principal Component Analysis (PCA), Locally Linear Embedding (LLE), Factor Analysis

Unit V: PROBABILISTIC LEARNING: Bayesian Learning, Bayes Optimal Classifier, Naïve Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns: MACHINE LEARNING IN PRACTICE: Design, Analysis and Evaluation of Machine Learning Experiments, Other Issues: Handling imbalanced data sets

Recommended Texts:

- 1. EthemAlpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition 2014.
- 2. MehryarMohri, Afshin Rostamizadeh, Ameet Talwalkar "Foundations of Machine Learning", MIT Press, 2012.

Reference Books:

- 1. Tom Mitchell, "Machine Learning", McGraw Hill, 3 rd Edition, 1997.
- 2. Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.
- 3. Stephen Marsland, "Machine Learning An Algorithmic Perspective", 2 nd Edition, CRC Press, 2015.
- 4. Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012
- 5. Jiawei Han and Micheline Kambers and Jian Pei, "Data Mining –Concepts and Techniques", 3 rdEdition, Morgan Kaufman Publications, 2012.
- 6. Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, "Mathematics for Machine Learning", Cambridge University Press, 2019.

Web References:

1. https://www.youtube.com/watch?v=r4sgKrRL2Ys&list=PL1xHD4vteKYVpaIiy29 5pg6_SY5qznc77

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	S	S	M	S	M	L	M	S	L	L
CO 2	S	M	S	L	S	L	M	L	M	S
CO 3	M	S	L	M	M	S	L	S	L	S
CO 4	L	S	S	L	S	M	S	L	S	M
CO 5	S	L	M	S	L	L	M	S	M	S

S-Strong M-Medium L-Low